首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   2篇
  国内免费   15篇
测绘学   6篇
大气科学   16篇
地球物理   30篇
地质学   77篇
海洋学   23篇
天文学   43篇
综合类   2篇
自然地理   8篇
  2022年   2篇
  2021年   8篇
  2020年   1篇
  2019年   4篇
  2018年   20篇
  2017年   7篇
  2016年   11篇
  2015年   10篇
  2014年   17篇
  2013年   5篇
  2012年   16篇
  2011年   12篇
  2010年   10篇
  2009年   9篇
  2008年   15篇
  2007年   7篇
  2006年   11篇
  2005年   7篇
  2004年   1篇
  2003年   4篇
  2002年   8篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有205条查询结果,搜索用时 187 毫秒
71.

Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.

  相似文献   
72.
73.
We present scientific program construction principles and a time allocation scheme developed for the World Space Observatory—Ultraviolet (WSO-UV) mission, which is an international space observatory for observation in UV spectral range 100–300 nm. The WSO-UV consists of a 1.7 m aperture telescope with instrumentation designed to carry out high resolution spectroscopy, long-slit low resolution spectroscopy and direct sky imaging. The WSO-UV Ground Segment is under development by Spain and Russia. They will coordinate the Mission and Science Operations and provide the satellite tracking stations for the project.  相似文献   
74.
Izvestiya, Physics of the Solid Earth - An Erratum to this paper has been published: https://doi.org/10.1134/S1069351321120016  相似文献   
75.
New measurements of sulfur dioxide (SO2) and monoxide (SO) in the atmosphere of Venus by SPICAV/SOIR instrument onboard Venus Express orbiter provide ample statistics to study the behavior of these gases above Venus’ clouds. The instrument (a set of three spectrometers) is capable to sound atmospheric structure above the clouds in several observation modes (nadir, solar and stellar occultations) either in the UV or in the near IR spectral ranges. We present the results from solar occultations in the absorption ranges of SO2 (190–230 nm, and at 4 μm) and SO (190–230 nm). The dioxide was detected by the SOIR spectrometer at the altitudes of 65–80 km in the IR and by the SPICAV spectrometer at 85–105 km in the UV. The monoxide’s absorption was measured only by SPICAV at 85–105 km. We analyzed 39 sessions of solar occultation, where boresights of both spectrometers are oriented identically, to provide complete vertical profiling of SO2 of the Venus’ mesosphere (65–105 km). Here we report the first firm detection and measurements of two SO2 layers. In the lower layer SO2 mixing ratio is within 0.02–0.5 ppmv. The upper layer, also conceivable from microwave measurements by Sandor et al. (Sandor, B.J., Todd Clancy, R., Moriarty-Schieven, G., Mills, F.P. [2010]. Icarus 208, 49–60) is characterized by SO2 increasing with the altitude from 0.05 to 2 ppmv, and the [SO2]/[SO] ratio varying from 1 to 5. The presence of the high-altitude SOx species could be explained by H2SO4 photodissociation under somewhat warmer temperature conditions in Venus mesosphere. At 90–100 km the content of the sulfur dioxide correlates with temperature increasing from 0.1 ppmv at 165–170 K to 0.5–1 ppmv at 190–192 K. It supports the hypothesis of SO2 production by the evaporation of H2SO4 from droplets and its subsequent photolysis at around 100 km.  相似文献   
76.
77.
The 10th International Conference on Gas in Marine Sediments (GIMS10) took place from 6 to 11 September 2010 in Listvyanka (Russia), on the shores of Lake Baikal. The conference was organized as a double jubilee, celebrating both the fact that it was the 10th event in this series and the 20th anniversary of the series. A total of 72 oral and 47 poster presentations were given in eight thematic sessions and the presentations were discussed by 126 participants from academic, governmental and commercial institutions from 19 countries, consisting of geologists, biologists, microbiologists, geophysicists, geochemists, oceanographers and limnologists. Volume 32(5/6) of Geo-Marine Letters is a double issue containing 16 selected papers from GIMS10, and has been guest edited by M. De Batist and O. Khlystov. The papers reflect the broad-spectrum disciplines represented at the conference and cover a wide range of aspects of gas in marine sediments from many parts of the world, but with a special emphasis on the gas seeps, gas hydrates and mud volcanoes of Lake Baikal.  相似文献   
78.
Global climate change may have a noticeable impact on the northern environment, leading to changes in permafrost, vegetation and fluvial morphology. In this paper we compare the results from three geomorphological models and study the potential effects of changing climatic factors on the river channel types in North-European Russia. Two of the selected models by Romashin [Romashin, V.V., 1968. Variations of the river channel types under governing factors, Annals of the Hydrological Institute, vol. 155. Hydrometeoizdat, Leningrad, pp. 56–63.] and Leopold and Wolman [Leopold, L.B., Wolman, M.G., 1957. River channel pattern: braided, meandering and straight, Physiographic and hydraulic studies of rivers. USA Geological Survey Professional Paper 252, pp. 85–98.] are conventional QS-type models, which predict the existence of either multi-thread or single-tread channel types using data on discharge and channel slope. The more advanced model by Van den Berg [Van den Berg, J.H., 1995. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12, 259–270.] takes into account the size of the sediment material.We used data from 16 runoff gauges to validate the models and predict the channel types at selected locations under modern and predicted for the future climatic conditions. Two of the three models successfully replicated the currently existing channel types in all but one of the studied sites. Predictive calculations under the hypothetical scenarios of 10%, 15%, 20% and 35% runoff increase gave different results. Van den Berg's model predicted potential transformation of the channel types, from single- to multi-thread, at 4 of 16 selected locations in the next few decades, and at 5 locations by the middle of the 21st century. Each of the QS-type models predicted such transformation at one site only.Results of the study indicate that climatic warming in combination with other environmental changes may lead to transformation of the river channel types at selected locations in north-western Russia. Further efforts are needed to improve the performance of the fluvial geomorphological models and their ability to predict such changes.  相似文献   
79.
The high resolution laboratory spectrum of hot water vapour has been recorded in the 500–13 000 cm−1 wavenumber range and we report on the analysis of the 4750–13 000 cm−1 (0.769–2.1 μm) portion. The emission spectrum was recorded using an oxy-acetylene welding torch and a Fourier transform spectrometer. Line assignments in the laboratory spectrum as well as in an absorption spectrum of a sunspot umbra were made with the help of the BT2 line-list. Our torch spectrum is the first laboratory observation of the 9300 Å'steam bands' seen in M-stars and brown dwarfs.  相似文献   
80.
给出了1993年8月8日关岛地震(Ms=7.1,深度60km)前后ULF(Ultra Low Frequency:超低频信号,频段为O.005~10Hz)地磁信号的分析结果.ULF观测系统位于日本关岛,距离震中约65km.对观测数据进行分析后得出以下结论:①建议用非常细致的统计分析(月均值,标准偏差)来判断ULF信号的强度和极化值(比如:Z/H比值);②ULF信号活动强度和∑Kp的对比,有助于区别空间地磁脉动和非空间源地磁辐射;③发现Z/H比值的使用在把可能来自震源的辐射从空间等离子波中识别出来非常重要;④从对极化值的时间序列的统计分析发现极化值在震前仅一个月时有一个显著的增强,表明这期间的电磁异常现象很可能是震磁前兆信号;⑤Z分量的时间变化类似于Loma Prieta地震前的变化,即在震前10天到两周有明显的增强,在震前几天出现另一次增强;⑥可能与地震有关的电磁辐射是一种类似噪音的自然现象,它们的主要频带范围0.02~0.05Hz(最大幅值约为0.1nT).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号